
A Simple Technique for Handling Multiple Polymorphism

J
Daniel H. H. Ingalls

Mail Stop 22-Y

Apple Computer, Inc.

20525 Mariani Avenue

Cupertino, CA 95014

Abstract

Certain situations arise in programming that lead to multiply

polymorphic expressions, that is, expressions in which several

terms may each be of variable type. In such situations,

conventional object-oriented programming practice breaks

down, leading to code which is not properly modular. This

paper describes a simple approach to such problems which

preserves all the benefits of good object-oriented programming

style in the face of any degree of polymorphism. An example

is given in Smallta~-80 syntax, but the technique is relevant to

all object-oriented languages.

Polymorphism and Messages

The object-oriented style of programming was introduced to

overcome the complexity barrier of polymorphism in extensible

languages. Previous attempts at extensible languages were

tempting in their power to describe new fields of information,

but they failed to deliver the same economy of description as

system size increased. Procedures in an extensible language

had to be polymorphic - in other words, they had to deal with

arguments of many different types. The conventional solution

to such polymorphism was to test for each type and then

execute code appropriate to that case. This approach, although

adequate for certain simple applications, violated basic

principles of modularity, and led to a combinatoric explosion of

complexity for large programs.

The introduction of the message paradigm for computation

finally overcame this barrier, and allowed the promise of

extensible languages to be realized in full. The

message-sending process itself absorbs the need for type

testing, and the procedures (methods), being local to their
permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its ttAte appear.
and nouce ts given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or speeiFg permission.
© 1986 ACM 0-89791-204-7/86/09(0)0347 75¢

particular type (class), are not polymorphic, and do not depend

on other types in the system.

All current object-oriented languages thus support simple

polymorphism. That is to say, a variable or expression

representing the receiver of a message may, dynamically, vary

in type. Different but appropriate results will be produced,

depending on the type of each receiver. This capability leads to

a great simplification in the description of behavior of different

but similar objects. Moreover, most object-oriented

implementations provide an efficient message construct, so that

this support for polymorphic receivers costs little more than a

conventional procedure call.

The Problem

Certain situations arise, however, where more than one

variable in an expression is independently polymorphic. Such

cases usually lead to a style of coding which reverts to explicit

type testing and thus brings back all the old modularity

problems of procedural coding.

Let us take as an example the case of graphical objects and

display ports on which such objects may be displayed. Clearly

a variable holding a graphical object will frequently be

polymorphic, taking on such values as rectangles, ovals, lines,

text, bitmap images, or other more complex graphical objects.

At the same time, however, a variable holding a display port

may well also take on values of different concrete type, such as

a normal display port, a printing port, a port for xemote display

over a communication line, and so on. Thus we have the

following doubly polymorphic interaction:

rectangle display
oval ~ printer

overlay ~

September 1986 OOPSLA '86 Proceedings 347

In this situation, programmers will frequently write a family of

methods for each graphical object of the form:

<Rectangle> displayOn: aPort

aPort isMemberOf: DisplayPort

ifTme: ["code for displaying on DisplayPort"].

aPort isMemberOf: PrinterPort

ifrrue: ["code for displaying on PrinterPort"].

aPort isMemberOf: RemotePort

ifTrue: ["code for displaying on RemotePort"|.

... and similarly for the other graphical objects.

At least the code is now properly distributed so that it is local to

each specific graphical object, and it would be easy to add a

new kind of graphical object, or edit an existing one.

However, with regard to different kinds of display ports, this

code will be difficult to extend or even to maintain. Of course,

the methods could have been dislxibuted through the display

port classes, but then it would be complicated to extend to new

graphical objects.

Thus the programmer has been let down by conventional

message dispatch, which only supports polymorphism of

message receivers, not of arguments as well. The code above

will be seen to grow in complexity with the degree of

polymorphism, and in so doing it presents a barrier to any

naive programmer wishing to add a new kind of displayable

object or display port. Any error in augmenting the above code

fragments to deal with a new kind of object will result in failure

of existing code, possibly leading to complete loss of

environmental support. These are all the problems which

object-oriented programming was supposed to cure.

[Some recent object-oriented systems, such as CommonLoops 1, provide

for methods that are polymorphic in more than one parameter. This

relieves the programmer from having to implement the solution below,

but the solution proposed is an effective one for implementing such a

facility.]

The Solut ion

Fortunately the solution to dealing with multiple polymorphism

is available in all existing object-oriented languages - it is only

necessary to understand the connection between polymorphism

and message sending to recognize the appropriate approach. In

essence, each message transmission reduces a polymorphic

variable to a monomorphic one by the type dispatch inherent in

message lookup. Usually (by design), only the receiver is

polymorphic, and the situation is simple. However, in the

doubly polymorphic example above, the furst message dispatch

only does half the job - the argument to the target method is still

polymorphic. This suggests that another message must be sent

to reduce the remaining polymorphism.

To return to our display object example, one would define a
relay method in each graphical object to effect a further dispatch

on the port type as follows:

<Rectangle> displayOn: aPort

aPort displayRectangle: self

<Oval> displayOn: aPort

aPort displayOval: self

<Bitmap> displayOn: aPort

aPort displayBitmap: self

... and similarly for the other graphical objects.

The information gained in the first dispatch must be preserved

by introducing a new family of messages specific to the
graphical object types. Now one needs only to define methods

for this family of messages in each of the display port classes

as follows:

<DisplayPort> displayRectangle: aRect

"code to display a rectangle on a displayPort"

<DisplayPort> displayOval: aRect

"code to display an oval on a displayPort"

<DisplayPort> displayBitmap: aRect

"code to display a bitmap on a displayPort"

... and similarly for the other graphical objects,

<PrlnterPort> displayRectangle: aRect

"code to display a rectangle on a printerPort"

<PrinterPort> displayOval: aRect

"code to display an oval on a printerPort"

< PrinterPort> displayBitmap: aRect

"code to display a bimmp on a printerPort"

... and similarly for the other graphical objects,

... and similarly for the other display ports.

This solution preserves the modularity of object-oriented

programming style. If one wishes to add a new kind of

graphical object, one needs never to tamper with existing code.

but only to define the relay message in the new class, and the

corresponding implementation methods in each of the actual

348 OOPSLA '86 Proceedings September 1986

port classes. Adding a new port class is even simpler, as it

amounts only to implementing the full family of displayX:

messages.

Of course the reverse solution in which ports relayed to

graphical objects would have equally good modularity

properties. The choice in this case depends on a design

decision as to whether the final methods belong more in the

graphical object classes or in the display port classes.

The technique described above~n be used to reduce higher

degrees of polymorphism as well. Each subsequent message

dispatch reduces a further degree of polymorphism.

Fortunately, just as double polymorphism is much less

common than simple polymorphism, so are higher degrees

much rarer still.

Experience
The approach oudined above has proven effective in several

situations beside the display example cited. One is the

interaction between different event types and event handlers.

Another arises in connection with logic programming where

both receiver and argument of the message unifyWith: are
polymorphic across l~onstants, variables, terms, and other

forms. A third is an experimental rewrite of the arithmetic

coercion logic in the Smalltalk-80 system.

References
[I.] CommonLoops: Merging Lisp and Object-Oriented

Programming, by Daniel Bobrow et aL, Proceedings of

OOPSLA '86, September 1986, Portland Oregon

September 1986 OOPSLA '86 Proceedings 349

