
North-Holland Publishing Company

Microprocessing and Microprogramming 15 (1985) 253-261

Programming as Theory Building*

253

Peter Naur
Datalogisk Institut, Copenhagen University, Sigurdsgade 41,
DK-2200 Copenhagen N, Denmark

Some views on programming, taken in a wide sense and regard-
ed as a human activity, are presented. Accepting that programs

will not only have to be designed and produced, but also
modified so as to cater for changing demands, it is concluded

that the proper, primary aim of programming is, not to produce

programs, but to have the programmers build theories of the
manner in which the problems at hand are solved by program
execution. The implications of such a view of programming on
matters such as program life and modification, system develop-

ment methods, and the professional status of programmers, are
discussed.

Keywords: General; General Terms: Human Factors, Theory,
programming psychology, programming methodology.

1. Introduction

The present discussion is a contribution to the
understanding of what programming is. It suggests
that programming properly should be regarded as
an activity by which the programmers form or
achieve a certain kind of insight, a theory, of the
matters at hand. This suggestion is in contrast to
what appears to be a more common notion, that
programming should be regarded as a production
of a program and certain other texts.

Some of the background of the views presented
here is to be found in certain observations of what
actually happens to programs and the teams of pro-
grammers dealing with them, particularly in situa-
tions arising f rom unexpected and perhaps er-
roneous program executions or reactions, and on
the occasion of modifications of programs. The
difficulty of accomodating such observations in a
production view of programming suggests that this
view is misleading. The theory building view is

* Invited keynote address at Euromicro 84, 1984 August 28,
Copenhagen, Denmark.

presented as an alternative.
A more general background of the presentation

is a conviction that it is important to have an ap-
propriate understanding of what programming is.
I f our understanding is inappropriate we will mis-
understand the difficulties that arise in the activity
and our attempts to overcome them will give rise to
conflicts and frustrations.

In the present discussion some of the crucial
background experience will first be outlined. This
is followed by an explanation of a theory of what
programming is, denoted the Theory Building
View. The subsequent sections enter into some of
the consequences of the Theory Building View.

2. Programming and the programmers' knowledge

I shall use the word programming to denote the
whole activity of design and implementat ion of
programmed solutions. What I am concerned with
is the activity of matching some significant part
and aspect of aft activity in the real world to the
formal symbol manipulat ion that can be done by a
program running on a computer . With such a no-
tion it follows directly that the programming activi-
ty I am talking about must include the development
in time corresponding to the changes taking place
in the real world activity being matched by the pro-
gram execution, in other words program modifica-
tions.

One way of stating the main point I want to
make is that programming in this sense primarily
must be the programmers ' building up knowledge
of a certain kind, knowledge taken to be basically
the programmers ' immediate possession, any docu-
mentat ion being an auxiliary, secondary product.

As a background of the further elaboration of
this view given in the following sections, the re-
mainder of the present section will describe some
real experience of dealing with large programs that

254 P. Naur / Programming as theory building

has seemed to me more and more significant as I
have pondered over the problems. In either case the
experience is my own or has been communicated to
me by persons having first hand contact with the
activity in question.

Case 1 concerns a compiler. It has been develop-
ed by a group A for a Language L and worked very
well on computer X. Now another group B has the
task to write a compiler for a language L + M, a
modest extension of L, for computer Y. Group B
decide that the compiler for L developed by group
A will be a good starting point for their design, and
get a contract with group A that they will get sup-
port in the form of full documentation, including
annotated program texts and much additional

written design discussion, and also personal advice.
The arrangement was effective and group B
managed to develop the compiler they wanted. In
the present context the significant issue is the im-
portance of the personal advice f rom group A in
the matters that concerned how to implement the
extensions M to the language. During the design
phase group B made suggestions for the manner in
which the extensions should be accomodated and
submitted them to group A for review. In several
major cases it turned out that the solutions sug-
gested by group B were found by group A to make
no use of the facilities that were not only inherent
in the structure of the existing compiler but were
discussed at length in its documentation, and to be
based instead on additions to that structure in the
fo rm of patches that effectively destroyed its power
and simplicity. The members of group A were able
to spot these cases instantly and could propose sim-
ple and effective solutions, framed entirely within
the existing structure. This is an example of how
the full program text and additional documenta-
tion is insufficient in conveying to even the highly
motivated group B the deeper insight into the
design, that theory which is immediately present to
the members of group A.

In the years following these events the compiler
developed by group B was taken over by other
programmers of the same organization, without
guidance f rom group A. Informat ion obtained by
a member of group A about the compiler resulting
f rom the further modification of it after about 10
years made it clear that at that later stage the

original powerful structure was still visible, but
made entirely ineffective by amorphous additions
of many different kinds. Thus, again, the program
text and its documentat ion has proved insufficient
as a carrier of some of the most important design
ideas.

Case 2 concerns the installation and fault diag-
nosis of a large real-time system for monitoring in-
dustrial production activities. The system is
marketed by its producer, each delivery of the
system being adapted individually to its specific en-
vironment of sensors and display devices. The size
of the program delivered in each installation is of
the order of 200.000 lines. The relevant experience
f rom the way this kind of system is handled con-
cerns the role and manner of work of the group of
installation and fault finding programmers. The
facts are, first that these programmers have been
closely concerned with the system as a full time oc-
cupation over a period of several years, f rom the
time the system was under design. Second, when
diagnosing a fault these programmers rely almost
exclusively on their ready knowledge of the system
and the annotated program text, and are unable to
conceive of any kind of additional documentat ion
that would be useful to them. Third, other pro-
grammers ' groups who are responsible for the
operation of particular installations of the system,
and thus receive documentat ion of the system and
full guidance on its use from the producer 's staff,
regularly encounter difficulties that upon consulta-
tion with the producer 's installation and fault find-
ing programmers are traced to inadequate under-
standing of the existing documentation, but which
can be cleared up easily by the installation and fault
finding programmers.

The conclusion seems inescapable that at least
with certain kinds of large programs, the continued
adaptat ion, modification, and correction of errors
in them, is essentially dependent on a certain kind
of knowledge possessed by a group of program-
mers who are closely and continuously connected
with them.

3. Ryle's notion of theory

If it is granted that programming must involve, as

P. Naur / Programming as theory building 255

the essential part, a building up of the program-
mers ' knowledge, the next issue is to characterize
that knowledge more closely. What will be con-
sidered here is the suggestion that the program-
mers ' knowledge properly should be regarded as a
theory, in the sense of Ryle [11]. Very briefly, a
person who has or possesses a theory in this sense
knows how to do certain things and in addition can
support the actual doing with explanations, justifi-
cations, and answers to queries, about the activity
of concern. It may be noted that Ryle's notion of
theory appears as an example of what K. Popper
[10] calls unembodied World 3 objects and thus has
a defensible philosophical standing. In the present
section we shall describe Ryle's notion of theory in
more detail.

Ryle [11] develops his notion of theory as part of
his analysis of the nature of intellectual activity,
particularly the manner in which intellectual activi-
ty differs from, and goes beyond, activity that is
merely intelligent. In intelligent behaviour the per-
son displays, not any particular knowledge of
facts, but the ability to do certain things, such as to
make and appreciate jokes, to talk grammatically,
or to fish. More particularly, the intelligent perfor-
mance is characterized in part by the person's do-
ing them well, according to certain criteria, but fur-
ther displays the person's ability to apply the
criteria so as to detect and correct lapses, to learn
f rom the examples of others, and so forth. It may
be noted that this notion of intelligence does not re-
ly on any notion that the intelligent behaviour
depends on the person's following or adhering to
rules, prescriptions, or methods. On the contrary,
the very act of adhering to rules can be done more
or less intelligently; if the exercise of intelligence
depended on following rules there would have to be
rules above how to follow rules, and about how to
follow the rules about following rules, etc. in an in-
finite regress, which is absurd.

What characterizes intellectual activity, over and
beyond activity that is merely intelligent, is the per-
son 's building and having a theory, where theory is
understood as the knowledge a person must have in
order not only to do certain things intelligently but
also to explain them, to answer queries about them,
to argue about them, and so forth. A person who
has a theory is prepared to enter into such activi-

ties; while building the theory the person is trying
to get it.

The notion of theory in the sense used here ap-

plies not only to the elaborate constructions of
specialized fields of enquiry, but equally to activi-
ties that any person who has received education will
participate in on certain occasions. Even quite un-
ambitious activities of everyday life may give rise to
people 's theorizing, for example in planning how
to place furniture or how to get to some place by
means of certain means of transportation.

The notion of theory employed here is explicitly
n o t confined to what may be called the most
general or abstract part of the insight. For exam-
ple, to have Newton 's theory of mechanics as
understood here it is not enough to understand the
central laws, such as that force equals mass times
acceleration. In addition, as described in more
detail by Kuhn [4, p. 187ff], the person having the
theory must have an understanding of the manner
in which the central laws apply to certain aspects of
reality, so as to be able to recognize and apply the
theory to other similar aspects. A person having
Newton 's theory of mechanics must thus under-
stand how it applies to the motions of pendula and
the planets, and must be able to recognize similar
phenomena in the world, so as to be able to employ
the mathematically ~xpressed rules of the theory
properly.

The dependence of a theory on a grasp of certain
kinds of similarity between situations and events of
the real world gives the reason why the knowledge
held by someone who has the theory could not, in
principle, be expressed in terms of rules. In fact,
the similarities in question are not, and cannot be,
expressed in terms of criteria, no more than the
similarities of many other kinds of objects, such as
human faces, tunes, or tastes of wine, can be thus
expressed.

4. The theory to be built by the programmer

In terms of Ryle's notion of theory, what has to be
built by the programmer is a theory of how certain
affairs of the world will be handled by, or support-
ed by, a computer program. On the Theory Build-
ing View of programming the theory built by the

256 P. Naur / Programming as theory building

programmers has pr imacy over such other pro-
ducts as program texts, user documentation, and
additional documentat ion such as specifications.

In arguing for the Theory Building View, the
basic issue is to show how the knowledge possessed
by the programmer by virtue of his or her having
the theory necessarily, and in an essential manner,
transcends that which is recorded in the document-
ed products. The answers to this issue is that the
p rogrammer ' s knowledge transcends that given in
documentat ion in at least three essential areas:

1) The programmer having the theory of the pro-
gram can explain how the solution relates to the af-
fairs of the world that it helps to handle. Such an
explanation will have to be concerned with the
manner in which the affairs of the world, both in
their overall characteristics and their details, are, in
some sense, mapped into the program text and into
any additional documentation. Thus the program-
mer must be able to explain, for each part of the
program text and for each of its overall structural
characteristics, what aspect or activity of the world
is matched by it. Conversely, for any aspect or ac-
tivity of the world the programmer is able to state
its manner of mapping into the program text. By
far the largest part of the world aspects and activi-
ties will of course lie outside the scope of the pro-
gram text, being irrelevant in the context.

However, the decision that a part o f the world is
relevant can only be made by someone who
understands the whole world. This understanding
must be contributed by the programmer.

2) The p rogrammer having the theory of the pro-
gram can explain why each part of the program is
what it is, in other words is able to support the ac-
tual program text with a justification of some sort.
The final basis of the justification is and must
always remain the p rogrammer ' s direct, intuitive
knowledge or estimate. This holds even where the
justification makes use of reasoning, perhaps with
application of design rules, quantitative estimates,
comparisons with alternatives, and such like, the
point being that the choice of the principles and
rules, and the decision that they are relevant to the
situation at hand, again must in the final analysis
remain a matter of the p rogrammer ' s direct know-
ledge.

3) The programmer having the theory of the pro-

gram is able to respond constructively to any de-
mand for a modification of the program so as to
support the affairs of the world in a new manner.
The design of how a modification is best incor-
porated into an established program depends on
the perception of the similarity of the new demand
with the operational facilities already built into the
program. The kind of similarity that has to be
perceived is one between aspects of the world. It
only makes sense to the agent who has knowledge
of the world, that is to the programmer, and can-
not be reduced to any limited set of criteria or
rules, for similar reasons as the ones given above
why the justification of the program cannot be thus
reduced.

While the discussion of the present section
presents some basic arguments for adopting the
Theory Building View of programming, an assess-
ment of the view should take into account to what
extent it may contribute to a coherent understand-
ing of programming and its problems. Such mat-
ters will be discussed in the following sections.

5. Problems and costs of program modifications

A prominent reason for proposing the Theory
Building View of programming is the desire to esta-
blish an insight into programming suitable for sup-
porting a sound understanding of program modifi-
cations. This question will therefore be the first one
to be taken up for analysis.

One thing seems to be agreed by everyone, that
software will be modified. It is invariably the case
that a program, once in operation, will be felt to be
only part of the answer to the problems at hand.
Also the very use of the program itself will inspire
ideas for further useful services that the program
ought to provide. Hence the need for ways to han-
dle modifications.

The question of program modifications is closely
tied to that of programming costs. In the face of a
need for a changed manner of operation of the pro-
gram, one hopes to achieve a saving of costs by
making modifications of an existing program text,
rather than by writing an entirely new program.

The expectation that program modifications at
low cost ought to be possible is one that calls for

P. Naur / Programming as theory building 257

closer analysis. First it should be noted that such an

expectation cannot be supported by analogy with

modifications of other complicated man-made

constructions. For many kinds of such construc-
tions, such as cars, or television receivers, modifi-

cations are entirely out of the question, in practice.
Where modifications are occasionally put into ac-

tion, t'or example in the case of buildings, they are
well known to be expensive and in fact complete
demolition of the existence building followed by
new construction is often found to be preferable

economically. Second, the expectation of the possi-

bility of low cost program modifications conceiv-

ably finds support in the fact that a program is a

text held in a medium allowing for easy editing. For
this support to be valid it must clearly be assumed
that the dominating cost is one of text manipula-

tion. This would agree with a notion of programm-
ing as text production. On the Theory Building

View this whole argument is false. This view gives

no support to an expectation that program modifi-
cations at low cost are generally possible.

A further closely related issue is that of program
flexibility. In including flexibility in a program we

build into the program certain operational facilities

that are not immediately demanded, but which are
likely to turn out to be useful. Thus a flexible pro-
gram is able to handle certain classes of changes of
external circumstances without being modified.

It is often stated that programs should be design-
ed to include a lot of flexibility, so as to be readily

adaptable to changing circumstances. Such advice
may be reasonable as far as flexibility that can be
easily achieved is concerned. However, flexibility
can in general only be achieved at a substantial

cost. Each item of it has to be designed, including
what circumstances it has to cover and by what

kind of parameters it should be controlled. Then it
has to be implemented, tested, and described. This
cost is incurred in achieving a program feature
whose usefulness depends entirely on future events.

It must be obvious that built-in program flexibility
is no answer to the general demand for adapting
programs to the changing circumstances of the
world.

In a program modification an existing pro-
grammed solution has to be changed so as to cater

for a change in the real world activity it has to

match. What is needed in a modification, first of

all, is a confrontation of the existing solution with

the demands called for by the desired modification.

In this confrontation the degree and kind of simi-
larity between the capabilities of the existing solu-

tion and the new demands has to be determined.
This need for a determination of similarity brings
out the merit of the Theory Building View. Indeed,

precisely in a determination of similarity the short-
coming of any view of programming that ignores
the central requirement for the direct participation

of persons who possess the appropriate insight

becomes evident. The point is that the kind of simi-
larity that has to be recognized is accessible to the

human beings who possess the theory of the pro-
gram, although entirely outside the reach of what
can be determined by rules, since even the criteria

on which to judge it cannot be formulated. From
the insight into the similarity between the new re-

quirements and those already satisfied by the pro-

gram, the programmer is able to design the change
of the program text needed to implement the
modification.

In a certain sense there can be no question of a

theory modification, only of a program modifica-

tion. Indeed, a person having the theory must al-
ready be prepared to respond to the kinds of ques-
tions and demands that may give rise to program
modifications. This observation leads to the impor-

tant conclusion that the problems of program
modification arise from acting on the assumption
that programming consists of program text pro-
duction, instead of recognizing programming as an
activity of theory building.

On the basis of the Theory Building View the

decay of a program text as a result of modifications
made by programmers without a proper grasp of

the underlying theory becomes understandable. As
a matter of fact, if viewed merely as a change of the
program text and of the external behaviour of the
execution, a given desired modification may usual-

ly be realized in many different ways, all correct.
At the same time, if viewed in relation to the theory
of the program these ways may look very different,
some of them perhaps conforming to that theory or
extending it in a natural way, while others may be
wholly inconsistent with that theory, perhaps hav-
ing the character of unintegrated patches on the

258 P. Naur / Programming as theory building

main part of the program. This difference of
character of various changes is one that can only
make sense to the p rogrammer who possesses the
theory of the program. At the same time the
character of changes made in a program next is
vital to the longer term viability of the program.
For a program to retain its quality it is mandatory
that each modification is firmly grounded in the
theory of it. Indeed, the very notion of qualities
such as simplicity and good structure can only be
understood in terms of the theory of the program,
since they characterize the actual program text in
relation to such program texts that might have been
written to achieve the same execution behaviour,
but which exist only as possibilities in the program-
mer ' s understanding.

6. Program Life, Death and Revival

A main claim of the Theory Building View of pro-
gramming is that an essential part of any program,
the theory of it, is something that could not con-
ceivably be expressed, but is inextricably bound to
human beings. It follows that in describing the
state of the program it is important to indicate the
extent to which programmers having its theory re-
main in charge of it. As a way in which to empha-
size this circumstance one might extend the notion
of program building by notions of program life,
death, and revival. The building of the program is
the same as the building of the theory of it by and
in the team of programmers . During the program
life a p rogrammer team possessing its theory re-
mains in active control of the program, and in par-
ticular retains control over all modifications. The
death of a program happens when the programmer
team possessing its theory is dissolved. A dead pro-
gram may continue to be used for execution in a
computer and to produce useful results. The actual
state of death becomes visible when demands for
modifications of the program cannot be intelligent-
ly answered. Revival of a program is the rebuilding
of its theory by a new programmer team.

The extended life of a program according to
these notions depends on the taking over by new
generations of programmers of the theory of the
program. For a new programmer to come to

possess an existing theory of a program it is insuffi-
cient that he or she has the opportunity to become
familiar with the program text and other documen-
tation. What is required is that the new program-
mer has the opportuni ty to work in close contact
with the programmers who already possess the
theory, so as to be able to become familiar with the
place of the program in the wider context of the
relevant real world situations and so as to acquire
the knowledge of how the program works and how
unusual program reactions and program modifica-
tions are handled within the program theory. This
problem of education of new programmers in an
existing theory of a program is quite similar to that
of the educational problem of other activities
where the knowledge of how to do certain things
dominates over the knowledge that certain things
are the case, such as writing and playing a music in-
strument. The most important educational activity
is the student 's doing the relevant things under
suitable supervision and guidance. In the case of
programming the activity should include discus-
sions of the relation between the program and the
relevant aspects and activities of the real world,
and of the limits set on the real world matters dealt
with by the program.

A very important consequence of the Theory
Building View is that program revival, that is re-
establishing the theory of a program merely from
the documentation, is strictly impossible. Lest this
consequence may seem unreasonable it may be
noted that the need for revival of an entirely dead
program probably will rarely arise, since it is hardly
conceivable that the revival would be assigned to
new programmers without at least some knowledge
of the theory had by the original team. Even so the
Theory Building View suggests strongly that pro-
gram revival should only be at tempted in excep-
tional situations and with full awareness that it is at
best costly, and may lead to a revived theory that
differs from the one originally had by the program
authors and so may contain discrepancies with the
program text.

In preference to program revival, the Theory
Building View suggests, the existing program text
should be discarded and the new-formed program-
mer team should be given the opportunity to solve
the given problem afresh. Such a procedure is more

P. Naur / Programming as theory building 259

likely to produce a viable program than program

revival, and at no higher, and possibly lower, cost.

The point is that building a theory to fit and sup-
port an existing program text is a difficult, frustrat-
ing, and time consuming activity. The new pro-

grammer is likely to feel torn between loyalty to the
existing program text, with whatever obscurities
and weaknesses it may contain, and the new theory
that he or she has to build up, and which, for better
or worse, most likely will differ from the original

theory behind the program text.

Similar problems are likely to arise even when a

program is kept continuously alive by an evolving

team of programmers, as a result of the differences
of competence and background experience of the
individual programmers, particularly as the team is

being kept operational by inevitable replacements
of the individual members.

7. Method and Theory Building

Recent years has seen much interest in programm-
ing methods. In the present section some comments
will be made on the relation between the Theory

Building View and the notions behind programm-
ing methods.

To begin with, what is a programming method?
This is not always made clear, even by authors who
recommend a particular method. Here a pro-
gramming method will be taken to be a set of work

rules for the programmers, telling what kind of

things the programmers should do, in what order,
which notations or languages to use, and what
kinds of documents to produce at various stages.

In comparing this notion of method with the
Theory Building View of programming, the most

important issue is that of actions or operations and
their ordering. A method implies a claim that pro-

gram development can and should proceed as a se-

quence of actions of certain kinds, each action
leading to a particular kind of documented result.
In the Theory Building View what matters most is
the building of the theory, while production of
documents is secondary. In building the theory
there can be no particular sequence of actions, for
the reason that a theory held by a person has no in-
herent division into parts and no inherent ordering.

Rather, the person possessing a theory will be able

to produce presentations of various sorts on the

basis of it, in response to questions or demands.
As to the use of particular kinds of notation or

formalization, again this can only be a secondary
issue since the primary item, the theory, is not, and
cannot be, expressed, and so no question of the

form of its expression arises.

It follows that on the Theory Building View, for
the primary activity of the programming there can

be no right method.
This conclusion may seem to conflict with esta-

blished opinion, in several ways, and might thus be

taken to be an argument against the Theory Build-

ing View. Two such apparent contradictions shall

be taken up here, the first relating to the impor-

tance of method in the pursuit of science, the se-
cond concerning the success of methods as actually
used in software development.

The first argument is that software development

should be based on scientific manners, and so

should employ procedures similar to scientific
methods. The flaw of this argument is the assump-
tion that there is such a thing as scientific method
and that it is helpful to scientists. This question has

been the subject of much debate in recent years,

and the conclusiQn of such authors as Feyerabend

[2], taking his illustrations from the history of
physics, and Medawar [5], arguing as a biologist, is
that the notion of scientific method as a set of
guidelines for the practising scientist is mistaken.

This conclusion is not contradicted by such work
as that of Polya [8,9] on program solving. This
work takes its illustrations from the field of mathe-
matics and leads to insight which is also highly rele-
vant to programming. However, it cannot be
claimed to present a method on which to proceed.

Rather, it is a collection of suggestions aiming at
stimulating the mental activity of the problem

solver, by pointing out different modes of work
that may be applied in any sequence.

The second argument that may seem to contra-
dict the dismission of method of the Theory Build-
ing View is that the use of particular methods has
been successful, according to published reports. To
this argument it may be answered that a methodi-
cally satisfactory study of the efficacy of pro-
gramming methods so far never seems to have been

260 P. Naur / Programming as theory building

made. Such a study would have to employ the well
established technique of controlled experiments
(cf. Brooks [1] or Moher and Schneider [6]). The
lack of such studies is explainable partly by the
high cost that would undoubtedly be incurred in
such investigations if the results were to be signifi-
cant, partly by the problems of establishing in an
operational fashion the concepts underlying what
is called methods in the field of program develop-
ment. Most published reports on such methods
merely describe and recommend certain techniques
and procedures, without establishing their useful-
ness or efficacy in any systematic way. An elabo-
rate study of five different methods by C. Floyd
and several co-workers [3] concludes that the no-
tion of methods as systems of rules that in an ar-
bi trary context and mechanically will lead to good
solutions is an illusion. What remains is the effect
of methods in the education of programmers . This
conclusion is entirely compatible with the Theory
Building View of programming. Indeed, on this
view the quality of the theory built by the program-
mer will depend to a large extent on the program-
mer ' s familiarity with model solutions of typical
problems, with techniques of description and veri-
fication, and with principles of structuring systems
consisting of many parts in complicated interac-
tions. Thus many of the items of concern of
methods are relevant to theory building. Where the
Theory Building View departs f rom that of the
methodologists is on the question of which techni-
ques to use and in what order. On the Theory
Building View this must remain entirely a matter
for the p rogrammer to decide, taking into account
the actual problem to be solved.

8. Programmers' Status and the Theory Building
View

The areas where the consequences of the Theory
Building View contrast must strikingly with those
of the more prevalent current views are those of the
programmers ' personal contribution to the activity
and of the programmers ' proper status.

The contrast between the Theory Building View
and the more prevalent view of the programmers '
personal contribution in apparent in much of the

common discussion of programming. As just one
example, consider the study of modifiability of
large software systems by Oskarsson [7]. This
study gives extensive information on a considerable
number of modifications in one release of a large
commercial system. The description covers the
background, substance, and implementation, of
each modification, with particular attention to the
manner in which the program changes are confined
to particular program modules. However, there is
no suggestion whatsoever that the implementation
of the modifications might depend on the back-
ground of the 500 programmers employed on the
project, such as the length of time they have been
working on it, and there is no indication of the
manner in which the design decisions are distri-
buted among the 500 programmers. Even so the
significance of an underlying theory is admitted in-
directly in statements such as that "decisions were
implemented in the wrong block" and in a refer-
ence to " a philosophy of A X E " . However, by the
manner in which the study is conducted these ad-
missions can only remain isolated indications.

More generally, much current discussion of pro-
gramming seems to assume that programming is
similar to industrial production, the programmer
being regarded as a component of that production,
a component that has to be controlled by rules of
procedure and which can be replaced easily. An-
other related view is that human beings perform
best if they act like machines, by following rules,
with a consequent stress on formal modes of ex-
pression, which make it possible to formulate cer-
tain arguments in terms of rules of formal manipu-
lation. Such views agree well with the notion, seem-
ingly common among persons working with com-
puters, that the human mind works like a com-
puter. At the level of industrial management these
views support treating programmers as workers of
fairly low responsibility, and only brief education.

On the Theory Building View the pr imary result
of the programming activity is the theory held by
the programmers. Since this theory by its very
nature is part of the mental possession of each pro-
grammer, it follows that the notion of the pro-
grammer as an easily replaceable component in the
program production activity has to be abandoned.
Instead the programmer must be regarded as a

P. Naur / Programming as theory building 261

responsible developer and manager of the activity
in which the computer is a part. In order to fill this
position he or she must be given a permanent posi-
tion, of a status similar to that of other profes-
sionals, such as engineers and lawyers, whose ac-
tive contributions as employers of enterprises rest
on their intellectual proficiency.

The raising of the status of programmers sug-
gested by the Theory Building View will have to be
supported by a corresponding reorientation of the
programmer education. While skills such as the
mastery of notations, data representations, and
data processes, remain important , the pr imary em-
phasis would have to turn in the direction of fur-
thering the understanding and talent for theory
formation. To what extent this can be taught at all
must remain an open question. The most hopeful
approach would be to have the student work on
concrete problems under guidance, in an active and
constructive environment.

9. Conclusions

Accepting program modifications demanded by
changing external circumstances to be an essential
part of programming, it is argued that the pr imary
aim of programming is to have the programmers
build a theory of the way the matters at hand may
be supported by the execution of a program. Such
a view leads to a notion of program life that
depends on the continued support of the program
by programmers having its theory. Further, on this
view the notion of a programming method, under-
stood as a set of rules of procedure to be followed
by the programmer, is based on invalid assump-

tions and so has to be rejected. As further conse-
quences of the view, programmers have to be ac-
corded the status of responsible, permanent
developers and managers of the activity of which
the computer is a part , and their education has to
emphasize the exercise of theory building, side by
side with the acquisition of knowledge of data pro-
cessing and notations.

References

[11 R.E. Brooks, Studying Programmer Behaviour Experimen-
tally, Commun. ACM 23, no. 4 (1980) 207-213.

[2] P. Feyerabend, Against Method (Verso Editions, London,
1978; ISBN: 86091-700-2).

[3] C. Floyd, Eine Untersuchung von Software-Entwicklungs-
methoden, in: H. Morgenbrod and W. Sammer, Eds., Pro-
grammierumgebungen und Compiler, Tagung 1/1984 des
German Chapter of the ACM (Teubner Verlag, Stuttgart,
1984; ISBN: 3-519-02437-3) 248-274.

(41 T.S. Kuhn, The Structure of Scientific Revolutions, Se-
cond Edition (University of Chicago Press, Chicago, 1970;
ISBN: 0-226-45803-2).

[5] P. Medawar, Pluto's Republic (Oxford University Press,
Oxford, 1982; ISBN: 0-19-217726-5).

[6] T. Moher and G.M. Schneider, Methodology and experi-
mental Research in Software Engineering, Int. J. Man-
Mach. Stud. 16, (1 jan. 1982) 65-87.

[7] O. Oskarsson, Mechanisms of Modifiability in Large Soft-
ware Systems (Link6ping Studies in Science and Technol-
ogy, Dissertations, no. 77, Link6ping, 1982; ISBN:
91-7372- 527 -7).

[8J G. Polya, How To Solve It (Doubleday Anchor Book, New
York, 1957).

[9] G. Polya, Mathematics and Plausible Reasoning (Princeton
University Press, Princeton, New Jersey, 1954).

[10] K.R. Popper and J.C. Eccles, The Self and lts Brain (Rout-
ledge and Kegan Paul, London, 1977).

[11] G. Ryle, The Concept of Mind (Penguin Books Ltd., Har-
mondsworth, England, 1963).

