34 SMALLTALK BEST PRACTICE PATTERNS

Stream>>print: anObject
anObject printOn: self
Point>>printOn: aStream
aStream
print: x;
nextPutAll:* @
print: y

This pattern seems to veer perilously close to the realm of pure aes-
thetics. However, | often find that the desire to use it is followed
closely by the absolute need to use it. As soon as you have all the
messages going to a single object, that object can easily vary with-
out affecting any of the parameters.

Put Reversing Methods in a method protocol named after the mes-
sage being reversed. For example, Stream>>print: is in the method
protocol “printing.”

_ 1
— Method Object

You have a method that does not simplify well with Composed Method (p. 21).

® How do you code a method where many lines of code share
many arguments and temporary variables?

The behavior at the center of a complex system is often complicated. That
complexity is generally not recognized at first, so the behavior is represented
as a single method. Gradually that method grows and grows, gaining more
lines, more parameters, and more temporary variables, until it is a monstrous
mess.

Far from improving communications, applying Composed Method to such
a method only obscures the situation. Since all the parts of such a method gen-
erally need all the temporary variables and parameters, any piece of the
method you break off requires six or eight parameters.

The solution is to create an object to represent an invocation of the
method and use the shared namespace of instance variables in the object to

From the Library of Kulbir Singh

BEHAVIOR 35

enable further simplification using Composed Method. However, these
objects have a very different flavor than most objects. Most objects are
nouns, these are verbs. Most objects are easily explainable to clients, these
are not because they have no analog in the real world. However, Method
Objects are worth their strange nature. Because they represent such an
important part of the behavior of the system, they often end up at the cen-
ter of the architecture.

® (Create a class named after the method. Give it an instance vari-
able for the receiver of the original method, each argument, and
each temporary variable. Give it a Constructor Method that takes
the original receiver and the method arguments. Give it one
instance method, #compute, implemented by copying the body
of the original method. Replace the method with one that creates
an instance of the new class and sends it #compurte.

This is the last pattern | added to this book. | wasn’t going to include
it because | use it so seldom. Then it convinced an important client
to give me a big contract. | realized that when you need it, you
REALLY need it.

The code looked like this:

Obligation>>sendTask: aTask job: aJob
| notProcessed processed copied executed |
...150 lines of heavily commented code...

First, | fried Composed Method. Every time | tried to break off a
piece of the method, | redlized | would have to send it both para-
meters and all four temps:

Obligation>>prepareTask: aTask job: aJob notProcessed:
notProcessedCollection processed: processedCollection
copied: copiedCollection executed: executedCollection

Not only was this ugly, but the resulting invocation didn’t save any
lines of code (see Indented Control Flow, below). After fifteen min-
utes or so of struggle, | went back to the original method and used
Method Object. First | created the class:

From the Library of Kulbir Singh

SMALLTALK BEST PRACTICE PATTERNS

Class: TaskSender

superclass: Object

instance variables: obligation task job notProcessed
processed copied executed

Notice that the name of the class is taken directly from the selector
of the original method. Notice also that the original receiver, both
arguments, and all four temps became instance variables.

The Constructor Method took the original receiver and both argu-
ments as parameters:

TaskSender class>>obligation: anObligation task: aTask
job: aJob
Aself new
setObligation: anObligation
task: aTask
job: adob

Next | copied the code from the original method. The only change
| made was textually replacing “alask” with “task” and "aJob” with
“job,” since parameters are named differently than instance vari-
ables. Oh, | also deleted the declaration of the temps, since they
were now instance variables.

TaskSender>>compute
...150 lines of heavily commented code...

Then | changed the original method to create and invoke a
TaskSender:

From the Library of Kulbir Singh

BEHAVIOR 37

Obligation>>sendTask: aTask job: aJob
(TaskSender
obligation: self
task: aTask
job: aJob) compute

| tried out the method to make sure | hadn’t broken anything. Since
all | had been doing was moving text around, and | did it carefully,
the revised method and its associated object worked the first time.

Now came the fun part. Since all the pieces of the method now
shared the same instance variables, | could use Composed
Method without having to pass any parameters. For example, the
piece of code that prepared a Task became a method called
#preparelask.

The whole job took about two hours, but by the time | was done the
#compute method read like documentation; | had eliminated
three of the instance variables, the code as a whole was half of its
original length, and I'd found and fixed a bug in the original code.

Execute Around Method
® How do you represent pairs of actions that have to be taken
together?

It is common for two messages to an object to have to be invoked in tan-
dem. When a file is opened, it has to be closed. When a context is pushed, it
has to be popped.

The obvious way to represent this is by publishing both methods as part
of the external protocol of the object. Clients need to explicitly invoke both, in
the right order, and make sure that if the first is called, the second is called as
well. This makes learning and using the object more difficult and leads to
many defects, such as file descriptor leaks.

® Code a method that takes a Block as an argument. Name the
method by appending "During: aBlock” to the name of the first

From the Library of Kulbir Singh

