Design Patterns: Elements of Reusable Object-Oriented Software

1. Introduction

Designing object-oriented software is hard, and designing reusable
object-oriented software is even harder. You must find pertinent objects, factor
them into classes at the right granularity, define class interfaces and inheritance
hierarchies, and establish key relationships among them. Your design should be
specific to the problem at hand but also general enough to address future problems
and requirements. You also want to avoid redesign, or at least minimize it.
Experienced object-oriented designers will tell you that a reusable and flexible
design is difficult if not impossible to get "right" the first time. Before a
design is finished, they usually try to reuse it several times, modifying it each

time.

Yet experienced object-oriented designers do make good designs. Meanwhile new
designers are overwhelmed by the options available and tend to fall back on
non-object-oriented techniques they've used before. It takes a long time for
novices to learn what good object-oriented design is all about. Experienced

designers evidently know something inexperienced ones don't. What is it?

One thing expert designers know not to do is solve every problem from first

principles. Rather, they reuse solutions that have worked for them in the past.
When they find a good solution, they use it again and again. Such experience is
part of what makes them experts. Consequently, you'll find recurring patterns
of classes and communicating objects in many object-oriented systems. These

patterns solve specific design problems and make object-oriented designs more
flexible, elegant, and ultimately reusable. They help designers reuse successful
designs by basing new designs on prior experience. A designer who is familiar
with such patterns can apply them immediately to design problems without having

to rediscover them.

An analogy will help illustrate the point. Novelists and playwrights rarely design
their plots from scratch. Instead, they follow patterns like "Tragically Flawed
Hero" (Macbeth, Hamlet, etc.) or "The Romantic Novel" (countless romance novels).
In the same way, object-oriented designers follow patterns like "represent states
with objects" and "decorate objects so you can easily add/remove features." Once

you know the pattern, a lot of design decisions follow automatically.

We all know the value of design experience. How many times have you had design
déja-vu-that feeling that you've solved a problem before but not knowing exactly
where or how? If you could remember the details of the previous problem and how
you solved it, then you could reuse the experience instead of rediscovering it.
However, we don't do a good job of recording experience in software design for

others to use.

11



Design Patterns: Elements of Reusable Object-Oriented Software

The purpose of this book is to record experience in designing object-oriented
software as design patterns. Each design pattern systematically names, explains,
and evaluates an important and recurring design in object-oriented systems. Our
goal is to capture design experience in a form that people can use effectively.
To this end we have documented some of the most important design patterns and

present them as a catalog.

Design patterns make it easier to reuse successful designs and architectures.
Expressing proven techniques as design patterns makes them more accessible to
developers of new systems. Design patterns help you choose design alternatives
that make a system reusable and avoid alternatives that compromise reusability.
Design patterns can even improve the documentation and maintenance of existing
systems by furnishing an explicit specification of class and object interactions
and their underlying intent. Put simply, design patterns help a designer get a

design "right" faster.

None of the design patterns in this book describes new or unproven designs. We
have included only designs that have been applied more than once in different
systems. Most of these designs have never been documented before. They are either
part of the folklore of the object-oriented community or are elements of some
successful object-oriented systems—neither of which is easy for novice designers
to learn from. So although these designs aren't new, we capture them in a new

and accessible way: as a catalog of design patterns having a consistent format.

Despite the book's size, the design patterns in it capture only a fraction of
what an expert might know. It doesn't have any patterns dealing with concurrency
or distributed programming or real-time programming. It doesn't have any
application domain-specific patterns. It doesn't tell you how to build user
interfaces, how towrite device drivers, or how to use an object-oriented database.
Each of these areas has its own patterns, and it would be worthwhile for someone

to catalog those too.

¥*What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a problem which occurs over
and over again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice" [AIS+77]. Even though Alexander
was talking about patterns in buildings and towns, what he says is true about
object-oriented design patterns. Our solutions are expressed in terms of objects
and interfaces instead of walls and doors, but at the core of both kinds of patterns

is a solution to a problem in a context.

In general, a pattern has four essential elements:

12



Design Patterns: Elements of Reusable Object-Oriented Software

1. The pattern name is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two. Naming a pattern immediately
increases our design vocabulary. It lets us design at a higher level of
abstraction. Having a vocabulary for patterns lets us talk about them with
our colleagues, in our documentation, and even to ourselves. It makes it
easier to think about designs and to communicate them and their trade-offs
to others. Finding good names has been one of the hardest parts of developing
our catalog.

2. The problem describes when to apply the pattern. It explains the problem
and its context. It might describe specific design problems such as how
to represent algorithms as objects. It might describe class or object
structures that are symptomatic of an inflexible design. Sometimes the
problem will include a list of conditions that must be met before it makes
sense to apply the pattern.

3. The solution describes the elements that make up the design, their
relationships, responsibilities, and collaborations. The solution doesn't
describe a particular concrete design or implementation, because a pattern
is like a template that can be applied in many different situations. Instead,
the pattern provides an abstract description of a design problem and how
a general arrangement of elements (classes and objects in our case) solves
it.

4. The consequences are the results and trade-offs of applying the pattern.
Though consequences are often unvoiced when we describe design decisions,
they are critical for evaluating design alternatives and for understanding
the costs and benefits of applying the pattern. The consequences for
software of ten concern space and time trade-offs. They may address language
and implementation issues as well. Since reuse is often a factor in
object-oriented design, the consequences of a pattern include its impact
on a system's flexibility, extensibility, or portability. Listing these

consequences explicitly helps you understand and evaluate them.

Point of view affects one's interpretation of what is and isn't a pattern. One
person's pattern can be another person's primitive building block. For this book
we have concentrated on patterns at a certain level of abstraction. Design patterns
are not about designs such as linked lists and hash tables that can be encoded
in classes and reused as is. Nor are they complex, domain-specific designs for

an entire application or subsystem. The design patterns in this book are

descriptions of communicating objects and classes that are customized to solve
a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common
design structure that make it useful for creating a reusable object-oriented design
The design pattern identifies the participating classes and instances, their roles

and collaborations, and the distribution of responsibilities. Each design pattern

13



Design Patterns: Elements of Reusable Object-Oriented Software

focuses on a particular object-oriented design problem or issue. It describes
when it applies, whether it can be applied in view of other design constraints,
and the consequences and trade-offs of its use. Since we must eventually implement
our designs, a design pattern also provides sample C++ and (sometimes) Smalltalk

code to illustrate an implementation.

Although design patterns describe object-oriented designs, they are based on
practical solutions that have been implemented in mainstream object-oriented
programming languages like Smalltalk and C++ rather than procedural languages
(Pascal, C, Ada) or more dynamic object-oriented languages (CLOS, Dylan, Self).
We chose Smalltalk and C++ for pragmatic reasons: Our day-to-day experience has

been in these languages, and they are increasingly popular.

The choice of programming language is important because it influences one's point
of view. Our patterns assume Smalltalk/C++-level language features, and that
choice determines what can and cannot be implemented easily. If we assumed
procedural languages, we might have included design patterns called "Inheritance,"
"Encapsulation, " and "Polymorphism." Similarly, some of our patterns are supported
directly by the less common object-oriented languages. CLOS has multi-methods,
for example, which lessen the need for a pattern such as Visitor (page 366). In
fact, there are enough differences between Smalltalk and C++ to mean that some
patterns can be expressed more easily in one language than the other. (See Iterator

(289) for an example.)

¥Design Patterns in Smalltalk MVC

The Model/View/Controller (MVC) triad of classes [KP88] is used to build user
interfaces in Smalltalk-80. Looking at the design patterns inside MVC should help

you see what we mean by the term "pattern."

MVC consists of three kinds of objects. The Model is the application object, the
View is its screen presentation, and the Controller defines the way the user
interface reacts to user input. Before MVC, user interface designs tended to lump

these objects together. MVC decouples them to increase flexibility and reuse.

MVC decouples views and models by establishing a subscribe/notify protocol between
them. A view must ensure that its appearance reflects the state of the model.
Whenever the model's data changes, the model notifies views that depend on it.
In response, each view gets an opportunity to update itself. This approach lets
you attach multiple views to a model to provide different presentations. You can

also create new views for a model without rewriting it.

The following diagram shows a model and three views. (We've left out the controllers

for simplicity.) The model contains some data values, and the views defining a

14



Design Patterns: Elements of Reusable Object-Oriented Software

spreadsheet, histogram, and pie chart display these data in various ways. The
model communicates with its views when its values change, and the views communicate

with the model to access these values.

views

model

Taken at face value, this example reflects a design that decouples views from
models. But the design is applicable to a more general problem: decoupling objects
so that changes to one can affect any number of others without requiring the changed
object to know details of the others. This more general design is described by

the Observer (page 326) design pattern.

Another feature of MVC is that views can be nested. For example, a control panel
of buttons might be implemented as a complex view containing nested button views.
The user interface for an object inspector can consist of nested views that may
be reused in a debugger. MVC supports nested views with the CompositeView class,
a subclass of View. CompositeView objects act just like View objects; a composite
view can be used wherever a view can be used, but it also contains and manages

nested views.

Again, we could think of this as a design that lets us treat a composite view
just like we treat one of its components. But the design is applicable to a more
general problem, which occurs whenever we want to group objects and treat the

group like an individual object. This more general design is described by the

15



Design Patterns: Elements of Reusable Object-Oriented Software

Composite (183) design pattern. It lets you create a class hierarchy in which
some subclasses define primitive objects (e.g., Button) and other classes define
composite objects (CompositeView) that assemble the primitives into more complex

objects.

MVC also lets you change the way a view responds to user input without changing
its visual presentation. You might want to change the way it responds to the keyboard,
for example, or have it use a pop-up menu instead of command keys. MVC encapsulates
the response mechanism in a Controller object. There is a class hierarchy of

controllers, making it easy to create a new controller as a variation on an existing

one.

A view uses an instance of a Controller subclass to implement a particular response
strategy; to implement a different strategy, simply replace the instance with
a different kind of controller. It's even possible to change a view's controller
at run-time to let the view change the way it responds to user input. For example,
a view can be disabled so that it doesn't accept input simply by giving it a

controller that ignores input events.

The View-Controller relationship is an example of the Strategy (349) designpattern.
A Strategy is an object that represents an algorithm. It's useful when you want
to replace the algorithm either statically or dynamically, when you have a lot
of variants of the algorithm, or when the algorithm has complex data structures

that you want to encapsulate.

MVC uses other design patterns, such as Factory Method (121) to specify the default
controller class for a view and Decorator (196) to add scrolling to a view. But
the main relationships in MVC are given by the Observer, Composite, and Strategy

design patterns.

¥Describing Design Patterns

How do we describe design patterns? Graphical notations, while important and
useful, aren't sufficient. They simply capture the end product of the design
process as relationships between classes and objects. To reuse the design, we
must also record the decisions, alternatives, and trade-offs that led to it.

Concrete examples are important too, because they help you see the design inaction.

We describe design patterns using a consistent format. Each pattern is divided
into sections according to the following template. The template lends a uniform
structure to the information, making design patterns easier to learn, compare,

and use.

Pattern Name and Classification

16



Design Patterns: Elements of Reusable Object-Oriented Software

The pattern's name conveys the essence of the pattern succinctly. A
good name is vital, because it will become part of your design vocabulary.
The pattern's classification reflects the scheme we introduce in Section
1.5.

Intent

A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular design

issue or problem does it address?

Also Known As

Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem and how the class and object
structures in the pattern solve the problem. The scenario will help you

understand the more abstract description of the pattern that follows.

Applicability

What are the situations in which the design pattern can be applied?
What are examples of poor designs that the pattern can address? How can

you recognize these situations?
Structure
Agraphical representation of the classes in the pattern using a notation
based on the Object Modeling Technique (OMT) [RBP+91]. We also use
interaction diagrams [JCJ092, Boo94] to illustrate sequences of requests
and collaborations between objects. Appendix B describes these notations
in detail.

Participants

The classes and/or objects participating in the design pattern and their

responsibilities.

Collaborations

How the participants collaborate to carry out their responsibilities.

Consequences

17



Design Patterns: Elements of Reusable Object-Oriented Software

How does the pattern support its objectives? What are the trade-offs
and results of using the pattern? What aspect of system structure does it

let you vary independently?
Implementation

What pitfalls, hints, or techniques should you be aware of when

implementing the pattern? Are there language-specific issues?
Sample Code

Code fragments that illustrate how you might implement the pattern in

C++ or Smalltalk.
Known Uses

Examples of the pattern found in real systems. We include at least two

examples from different domains.
Related Patterns

What design patterns are closely related to this one? What are the

important differences? With which other patterns should this one be used?

The appendices provide background information that will help you understand the
patterns and the discussions surrounding them. Appendix A is a glossary of
terminology we use. We've already mentioned Appendix B, which presents the various
notations. We'll also describe aspects of the notations as we introduce them in
the upcoming discussions. Finally, Appendix C contains source code for the

foundation classes we use in code samples.

¥The Catalog of Design Patterns

The catalog beginning on page 93 contains 23 design patterns. Their names and
intents are listed next to give you an overview. The number in parentheses after
each pattern name gives the page number for the pattern (a convention we follow

throughout the book) .
Abstract Factory (99)

Provide an interface for creating families of related or dependent

objects without specifying their concrete classes.
Adapter (157)

18



Design Patterns: Elements of Reusable Object-Oriented Software

Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of

incompatible interfaces.

Bridge (171)

Decouple an abstraction from its implementation so that the two can

vary independently.

Builder (110)

Separate the construction of a complex object from its representation

so that the same construction process can create different representations.

Chain of Responsibility (251)

Avoid coupling the sender of a request to its receiver by giving more
than one object a chance to handle the request. Chain the receiving objects

and pass the request along the chain until an object handles it.

Command (263)

Encapsulate a request as an object, thereby letting you parameterize
clientswithdifferent requests, queue or log requests, and support undoable

operations.

Composite (183)

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly.

Decorator (196)

Attach additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality.

Facade (208)

Provide aunified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use.

Factory Method (121)

Define an interface for creating an object, but let subclasses decide

which class to instantiate. Factory Method lets a class defer instantiation

19



Design Patterns: Elements of Reusable Object-Oriented Software

to subclasses.

Flyweight (218)

Use sharing to support large numbers of fine-grained objects

efficiently.
Interpreter (274)
Given a language, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language.

Iterator (289)

Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

Mediator (305)

Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from referring to each

other explicitly, and it lets you vary their interaction independently.

Memento (316)

Without violating encapsulation, capture and externalize an object's

internal state so that the object can be restored to this state later.

Observer (326)

Define a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically.

Prototype (133)

Specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype.

Proxy (233)

Provide a surrogate or placeholder for another object to control access

to it.

Singleton (144)

20



Design Patterns: Elements of Reusable Object-Oriented Software

Ensure a class only has one instance, and provide a global point of

access to it.
State (338)

Allow an object to alter its behavior when its internal state changes.

The object will appear to change its class.
Strategy (349)

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from

clients that use it.
Template Method (360)

Define the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain steps

of an algorithm without changing the algorithm's structure.
Visitor (366)

Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the

classes of the elements on which it operates.

¥Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there
are many design patterns, we need a way to organize them. This section classifies
design patterns so that we can refer to families of related patterns. The

classification helps you learn the patterns in the catalog faster, and it can

direct efforts to find new patterns as well.

We classify design patterns by two criteria (Table 1.1). The first criterion,
called purpose, reflects what a pattern does. Patterns can have either creational,
structural, or behavioral purpose. Creational patterns concern the process of
object creation. Structural patterns deal with the composition of classes or

objects. Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility.

Purpose ‘

creational  strwctwral  senavierl
21




